

TOPOLOGY - III, SOLUTION SHEET 6

Exercise 1.

- (1) It follows from the definition of a deformation retract that the spaces A and X are homotopy equivalent via the maps $i : A \rightarrow X$ and $r := F(x, 1) : X \rightarrow A$. Therefore i_* and r_* define mutually inverse maps between $H_k(A)$ and $H_k(X)$.
- (2) It follows immediately from the long exact sequence of relative homology and (1) that $H_k(X, A) = 0$ for all k .
- (3) We have the following long exact sequence of a triple:

$$\dots \rightarrow H_i(B, A) \rightarrow H_i(X, A) \rightarrow H_i(X, B) \rightarrow H_{i-1}(B, A) \rightarrow \dots$$

It follows from (1) that the groups $H_i(B, A)$ vanish for all i . This gives us the required isomorphisms $H_i(X, A) \cong H_i(X, B)$.

- (4) Saying that a pair (Y, B) is a retract of (X, A) just means that there is a map $r : X \rightarrow Y$ such that r is deformation retract of X onto Y and $r|_B : B \rightarrow A$ is a deformation retraction onto A .

Now, we have the following long exact sequence associated to the triple $B \subseteq A \subseteq X$:

$$\dots \rightarrow H_i(Y, B) \rightarrow H_i(X, B) \rightarrow H_i(X, Y) \rightarrow H_{i-1}(Y, B) \rightarrow \dots$$

It follows from (1) that the groups $H_i(X, Y)$ vanish and hence we have that $H_i(Y, B) \cong H_i(X, B)$ for all i . Then by (2), it follows that $H_i(X, B) \cong H_i(X, A)$

Exercise 2. Please refer to Corollary 2.14 in [Hatcher's book](#), on page 114.

Exercise 3. This is the content of the exposition at the start of page 125 in [Hatcher's book](#).

Exercise 4.

- (1) This follows immediately from the long exact sequence in reduced relative homology for the pair (SX, C_-X) and the fact that C_-X is contractible which implies that $\tilde{H}_i(C_-) = 0$ for all i .
- (2) Just like (1), This follows from the long exact sequence in reduced relative homology for the pair (C_+X, X) and the fact that C_+X is contractible.
- (3) Let p be the vertex of the cone C_-X then by excision we have that $\tilde{H}_i((SX, C_-X)) = \tilde{H}_i((SX - \{p\}, C_-X - \{p\}))$ for all i . Then note that the pair (C_+X, X) is a deformation retract of the pair $(SX - \{p\}, C_-X - \{p\})$. Hence it follows from part (4) of exercise 1 that $\tilde{H}_i((SX, C_-X)) = \tilde{H}_i((SX - \{p\}, C_-X - \{p\})) \cong \tilde{H}_i(C_+X, X)$. Then the required isomorphisms follow from parts (1) and (2).

Exercise 5. The key observation is that the vertices of an irreducible $k-$ simplex in a barycentric subdivision of Δ^n are themselves barycentres of some sub-simplex of Δ^n . Therefore, the bijection is given by the following association; To a length $k-$ sequence $\sigma_0 \subsetneq \sigma_1 \subsetneq \dots \subsetneq \sigma_k$ of sub-simplices of Δ , we associate the simplex $[b_0, \dots, b_k]$, where b_i is the barycentre of σ_i .